CAT : No.133-01E-E

Made in Japan

About

Founded in 1930, Fujikin is now recognized as one of the world's leading manufacturers of specialty valves.

Since we received our first patent for a needle valve in 1953, we have been a manufacturer of valves and fittings, as well as ultra-precision flow control systems.

Today, Fujikin' s state-of-the-art products are used throughout the semiconductor, aerospace, chemical, pharmaceutical, power generation, and other industries.

As a global business, Fujikin operates four plants and one R & D center in Japan, as well as plants in Vietnam, Ireland, and the United States. In addition, there are service centers in China, Korea and Taiwan.

SEMICONDUCTOR

In 1975, Fujikin developed the first fine ceramic valve in response to customer concerns about conventional metal valves.

Featuring fine ceramic materials with significant abrasion and corrosion resistance, Cosmix Fine Ceramic Valves have been sold around the world over the last 30 years.

Globalization and Localization

COSMIX[™] Fine Ceramic Ball Valves

Ceramic materials offer greater hardness and excellent abrasion and corrosion resistance.

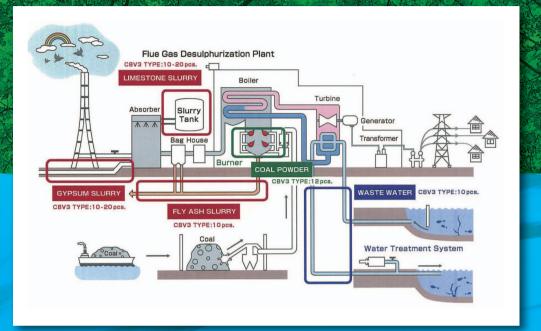
Cosmix Ball Valves feature fine ceramics in all wetted parts.

Features

- · Excellent durability due to ceramic materials.
- · Excellent flow control performance.
- · Floating ball structure, especially useful in slurry applications.
- · Simple construction, lightweight and compact.
- · Easy maintenance.

Performance

Item	Performance					
Maximum Operating Pressure	0.98 MPa					
Maximum Operating Differential Pressure	0.98 \sim 0.49 MPa(Depend on valve sizes)					
Maximum Operating Temperature	200 °C					
Seat Leakage	1/10000 of Maximum Cv Value ANSI FCI 70-2 CLASS IV (ANSI B 16.104)					
Valve Size	1/2"~6"					
Rangeability	15:1					
Flange Connection	DIN PN 10, ANSI 150, JIS 10K					



Applications

For flow control and on-off service of abrasive and corrosive fluids

Coal-Fired Thermal Power Plants Flue Gas Desulphurization Plants

Limestone slurry Gypsum slurry Fly ash slurry Waste water Coal powder

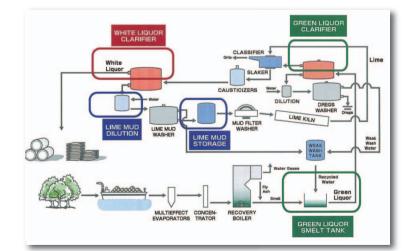
FUJIKIN, is committed to protecting the environment

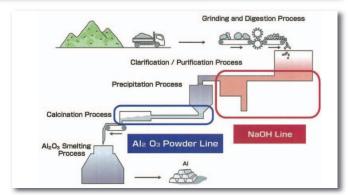
Pulp & Paper Mills

Green liquor White liquor Black liquor Lime mud Talc Clay

Chemical Plants

Hydrogen fluoride Phosphoric acid Caustic soda

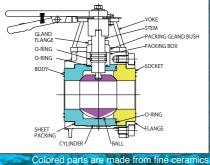

Alumina Refining


Caustic soda Alumina powder

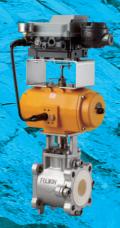
Steel Plants

Dry dust remover Coal powder

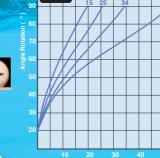
Oil Sands



COSMIX Fine Ceramic Ball Valves

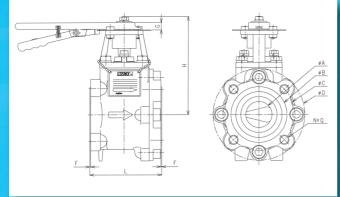

For Flow Control & On-Off. Service of Abrasive and Corrosive Fluids

Structure



Features

- 1. Excellent durability for abrasive and corrosive fluids. Wetted parts are made from solid fine ceramics.
- Excellent flow controllability: Each valve size offers 3-4 equal percentage (EQ%) triangular ports for precise flow control and a round hole ball for on-off service.
- 3. Floating ball structure.
- 4. Low seat leakage.
- 5. Small number of parts.
- 6. Simple structure, lightweight and compact.
- 7. Good maintainability.


Cv Value Curves

Rated Cv Value

2"

Cv Value Table

0:	Cv Value								
Sizes	ROUND PORT	TRIA	TRIANGULAR PC						
1/2"	8	4	2.5	1.5					
³ /4"	14	9	5	2.5					
1	24	17	11	7	3				
1 ¹ /2	55	35	25	15	10				
2"	90	50	34	25	15				
2 ¹ /2	130	80	54	35	25				
3"	195	120	80	58	40				
4"	340	200	130	85	57				
6"	750	500	350	250					

Manual Operated Type Dimension Table

Sizes	A	в	с	D	F	G	н	L	N	Q
1/2"	12	40	60.5	95	1	7	106	71	UNC 1/2	4
3/4"	17	48	69.9	100	1	7	109	79.5	UNC 1/2	4
1"	23	56	79.3	125	1.5	7	143	85	UNC 1/2	4
11/2"	36	76	98.6	140	1.5	9	158	111	UNC 1/2	4
2"	44	94	120.7	155	1.5	9	164	120	UNC 5/8	4
2¹/ 2"	56	104	140.0	175	1.5	9	172	140	UNC 5/8	4
3"	72	124	152.4	199	1.5	9	179	164.5	UNC 5/8	4
4"	89	148	190.5	229	1.5	Please consult with Fujikin for assistance with specifications.		193.5	UNC 5/8	8
6"	134	212	241.3	310	2.5			250	UNC 3/4	8

PP

Accessories

Actuator

Pneumatic Actuator

AUMA

Electric Actuator

ROTORK

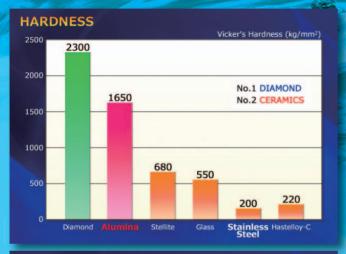
Positioner

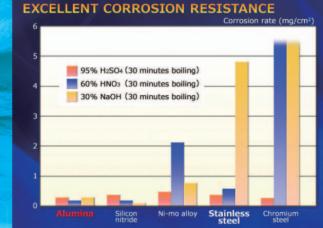
Standard: SSS

Regulator

Standard: SSS

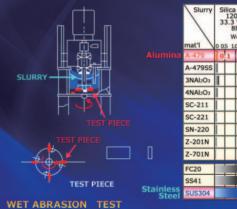
Characteristics of Fine Ceramic Materials


		Material (Kyocera No.)									
Characteris	99.5% Alumina Al ₂ O ₃ (A-479M)	99.5% Alumina Al ₂ O ₃ (A-479SS)	99.9% Alumina Al ₂ O ₃ (A-601D)	Y Zirconia ZrO ₂ (Z-201N)	Mg Zirconia ZrO ₂ (Z-220)	Sillicon Carbide SiC (SC-221)	Sillicon Nitride Si₃N₄ (SN-220)				
Color		White	White	Ivory	Ivory	Yellow	Black	Black			
Bulk Density	/	3.8	3.8	3.9	6.0	5.7	3.0	3.2			
Water Absorbenc	0	0	0	0	0	0	0.1				
Vickers Hardness.	kg · m/mm ²	1650	1700	1750	1250	1100	2400	1450			
500g Test	GPa	16.2	16.7	17.2	12.8	10.8	23.5	14.2			
Flexural Strength	kg · m/mm ²	31	33	50	100	70	50	60			
(Bending Strength)	MPa	304	323	490	980	686	490	588			
(Bending Strength)	Knsi	44	47	71	143	100	71	86			
0	kg · m/mm ²	220	240	-	580	-	500	390			
Compressive Strength	MPa	2157	2353	-	5686	-	4902	3824			
orrengin	Knsi	314	343	-	829	-	714	557			
Thermal Conductivity at 20°C (cal·cm/cm ² ·sec °C)		0.06	0.06	0.08	0.009	0.008	0.17	0.04			
Fracture Toughness	3.4	3.4	3.4	6.0	11.5	3.1	3.9				
Maximum Use Tempe	1600	1600	1750	200	800	1400	1200				
Thermal Shock	°C	200	250	250	300	450	350	550			
Resistance	°F	392	482	482	572	842	662	1022			
Cost Comparisor	า (%)	100	150	200	700	350-400	600-700	600-700			


Key Features

- 1. Greater hardness
- 2. Greater compressive strength
- 3. Stronger chemical resistance
- 4. Higher maximum temperature

Standard material: 99.5% alumina (Kyocera A-479M)


5. Smaller bulk density

HIGH COMPRESSIVE STRENGTH 5000 4000 (MPa) Ş pressive Strength (N 00 00 00 00 00 50 1000 Carbon Cast Iron High Speed

EXCELLENT ABRASION RESISTANCE

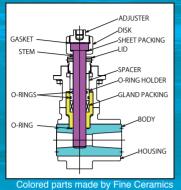
Fine Ceramic Reducers, Pipes and Orifices

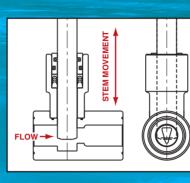
Reducer

Straight Pipe Spool Restriction Orifice Plate

Flange Adapter

Ceresist




COSMIX Fine Ceramic Plug Valves

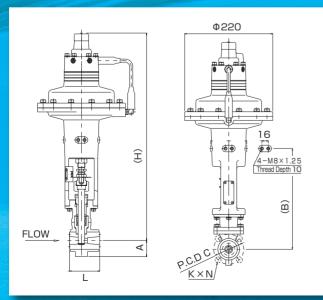
For Precise, Small-Cv Flow Control of Abrasive

and Corrosive Fluids

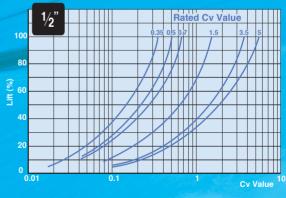
Structure

Performance

ltem	Performance					
Maximum Operating Pressure	1.96 MPa					
Maximum Operating Differential Pressure	1.47 MPa					
Maximum Operating Temperature	200 °C					
Seat Leakage	1/1000 of Maximum Cv Value [ANSI FCI 70-2 CLASS III (ANSI B 16.104)]					
Valve Size	1/2"~1 1/2"					
Rangeability	15:1					
Flange Connection	DIN PN 10, 16, ANSI 150, 300, JIS10K, 20K					


Accessories

Positioner (EP/PP)


Regulator

Features

- 1. Excellent durability for abrasive and corrosive fluids. Wetted parts are made from solid fine ceramics.
- 2. Excellent flow controllability: Each valve size offers 3-6 equal percentage (EQ%) triangular ports for precise flow control.
- 3. Low seat leakage.

Cv Value Curves

Cv Value Table

Sizes	Rated Cv Value										
1/2"	5	3.5 1.5 0.7 0.5									
³ /4"	7	5	3.5	1.5	0.7	0.35					
1"	17	7	3	-	-	-					
1 ¹ /2	35	25	15	-	-	-					

Dimensions

Sizes	L.	•	•	н	Α	NSI 1	50	A	NSI 3	00	DIN	PN10	, 16	Item No.		
Sizes		- L	- L	5		Α	п	С	K	Ν	С	K	Ν	С	K	Ν
1/2"	64	35	507	60.5	UNC ¹ / ₂	4	66.6	UNC 1/2	4	65	M12	4	CP-D			
³ /4"	76	40	516	69.9	UNC 1/2	4	82.6	UNC 5/8	4	75	M12	4	CP-E			
1"	102	45	530	79.3	UNC ¹ /2	4	88.9	UNC 5/8	4	85	M12	4	CP-F			
1 ¹ /2	114	55	727	98.6	UNC ¹ / ₂	4	114.3	UNC 3/4	4	110	M16	4	CP-H			
										2 C 12		(unit: mm)				

FUT KIN's Osaka Plant is ISO 9001 certified.

OSAKA PLANT 3-9-21 Nagata, Higashi-Osaka, Japan

This is to certify that the quality management system of the above organization has been assessed by the ISO Registration Center of KHK and found to be in accordance with the standard as below within the scope of product/service on the appendix 99QR-132R3-01EA :

Standard : ISO 9001:2000 / JIS Q 9001:2000 Registration No. : 98QR-132

Registration Date : October 1, 1998 Issue Number : 132R3-01E Issue Date : September 20, 2007 Valla Through : September 30, 2010 THE HIGH PRESSURE GAS SAFETY INSTITUTE OF JAPAN (KHK)

J. Mater

Sakuta.

Eiji Sakuta

AWARDS

Vaaler Award -Chemical Processing, U.S.A.

- 24th 10 Best New Products Award -The Business & Technology Daily News, JAPAN
- 9th Researcher Achievement Award -Ministry of Science and Technology, JAPAN
- Invention Grand Prize -Japan Institute of Invention and Innovation -The Business & Technology Daily News, JAPAN
- Best Products Award -Society of Chemical Engineers -Japan Management Association, JAPAN

CE Marking

FUT KIN. 's compliance with the PED 97/23/EC

Fujikin's **Cosmix** fine ceramic ball valve's main application is flue gas desulphurization. For this application, or any other application for which the working fluid is a liquid from Fluid Group 2 (i.e., a non-hazardous liquid), **COSMIX** falls within the range of Table 9 on the category graphs of the PED. Taking the maximum operating pressure and nominal size of the valve into account and referring to Table 9, **COSMIX** comes under the scope of Article 3, Paragraph 3 (referred to as Sound Engineering Practices) of the PED.

Article 3 of the PED states that "pressure equipment covered in this category must be designed using The SEP, must be accompanied by adequate instructions for safe use and must bear a mark which allows identification of the manufacturer."

Pressure equipment covered under Article 3, Paragraph 3 of the PED does not carry the CE mark, and therefore **Cosmix** valves do not bear the CE mark.

The Year 2013 Prime Minister's Prize The 5th Monodzukuri Nippon Grand Award Overseas Operation "Excellence Prize"

URL http://www.fujikin.co.jp/ E-mail info@fujikin.co.jp